Top 30 Trigonometry Questions and Answers
Top 30 Trigonometry Questions and Answers: Trigonometry is a branch of mathematics and by using some mathematical techniques, we can determine distances or heights. The word “Trigonometry” is derived from the Greek words “tri” (that means three), ‘gon’ (that means sides) and ‘metron’ (means measure). In short, Trigonometry is the study of relationships between the sides and angles of a triangle. Trigonometry is one of the most ancient subjects studied by scholars across the world. Trigonometry was used by astronomers to calculate distance from the Earth to the planets and stars. In geography, trigonometry is also used to create maps and establish an island's location in relation to longitudes and latitudes, among other things.
Top 30 Trigonometry Questions and their Detail Solutions
Q. (1) What is the value of cos20ocos40ocos60ocos80o?
(a) 1/4
(b) 1/16
(c) 3/4
(d) 3/16
Detail Solution:
Trick to solve these type of questions
Remember Below Trick
a) cos θ x cos 2θ x cos 4θ = ¼cos3θ
b) Sin θ x Sin 2θ x Sin 4θ = ¼ Sin3θ
c) tanθ x tan2θ x tan4θ = tan3θ
We have value
=cos20ocos40ocos60ocos80o
=(cos20ocos40ocos80)cos60o
Here, θ = 20o
So, ¼ (Cos 3x20)xcos60o =¼ Cos260o
= ¼ x (½)2 = 1/16
Hence, Option (b) is correct
Q. (2) What is the value of Sin20oSin40oSin60oSin80o?
(a) 1/4
(b) 1/16
(c) 3/16
(d) 3/4
Detail Solution:
Trick to solve these type of questions
Sin θ x Sin 2θ x Sin 4θ = ¼ Sin 3θ
We have value
=Sin20oSin40oSin60oSin80o
=(Sin20oSin40oSin80)Sin60o
Here, θ = 20o
So, ¼ (Sin 3x20)Sin60o =¼ Sin260o
= ¼ x (√3/2)2 = ¼ x 3/4= 3/16
Hence, Option (c) is correct
Q. (3) The value of cot180[cot720cos2220+1/(tan720sec2680)] is,
(a) 0
(b) 1
(c) 3
(d) 2
Detail Solution:
cot720= cot(900-180)=tan180
tan720= tan(900-180)=cot180
sec680= sec(900-220)=cosec220.
cos680= cos(900-220)=sin220
We have,
cot180[cot720cos2220+1/(tan720sec2680)]
=cot180[tan180cos2220+cot720cos2680)]
=cot180[tan180cos2220+tan180cos2680)]
=tan180cot180[cos2220+sin2220)]
=1.[1]=1
Hence, Option (b) is correct
Q. (4) The value of tan10tan20tan30....................... tan890 ?
(a) 1
(b) 0
(c) 3
(d) 2
Detail Solution:
As tan890= tan(900 - 10)=cot10,
tan880= tan(900 - 20)=cot20,
tan870= tan(900 - 30)=cot30
tan460= tan(900 - 440)=cot440
Now substituting these values in original equation we get
=tan10tan20tan30.... tan440 tan450 tan460..... tan870 tan880tan890
=tan10tan20tan30......tan440 tan450 cot440...........cot30 cot20cot10
=tan10cot10tan20 cot20tan30cot30.........tan440 cot440 tan4501.1.1.....................1.1 [As cot450=1]
Trick to solve these type of questions:
Remember Below Tricks:
a) tan10tan20tan30....................... tan89=1
b) cot10cot20cot30....................... cot89=1
c) cos10cos20cos30....................... cos90=0
d) cos10cos20cos30....................... (Greater than cos90)=0
e) sin10sin20sin30.......................sin180=0
e) sin10sin20sin30....................... (Greater than sin180)=0
Q. (5) The greatest value of sin4θ+cos4θ is ?
(a) 2
(b) 0
(c) 3
(d) 1
Detail Solution:
sin4θ+cos4θ=(sin2θ+cos2θ)2−2sin2θcos2θ
=1−2sin2θcos2θ
The maximum of this expression can only be 1 when, the second term is zero, or when either sinθ or cosθ is 0.
Hence, Option (b) is correct.
Q. (6) The minimum value of tan2θ+cot2θ is ?
(a) 2
(b) 0
(c) 3
(d) 1
Detail Solution:
We know a2 + 1/a2 has minimum value as 2,
So, tan2θ+cot2θ = tan2θ+1/tan2θ has min value as 2
Hence, Option (a) is correct.
Q. (7) Which one is greater sin1° or sin1 ?
(a) sin1°> sin1
(b) sin1°< sin1
(c) sin1°= sin1°
(d) None of these
Detail Solution:
We have 1=57.320 and we know
sinx>siny if x>y for acute angles
So 1>10
=sin1 > sin10
Hence, Option (b) is correct.
Q. (8) If tan(x+y)tan(x-y) = 1, then find tan(2x/3) ?
(a) 1/4
(b) 1/√3
(c) 3
(d) 1
Detail Solution:
tanA.tanB = 1
tanA = CotB
tanA=tan(90०-B)
A = 90०-B
A + B= 90०
So, (x+y) + (x-y)= 90०
2x =90०
x = 45०
tan(2x/3) = tan30०= 1/√3
Hence, Option (b) is correct.
Q. (9) The minimum value of cos2θ+sec2θ is ?
(a) 2
(b) 0
(c) 3
(d) 1
Detail Solution:
We know that a2 + 1/a2 has minimum value as 2,
So, cos2θ+sec2θ = cos2θ+1/cos2θ has min value as 2
Hence, Option (a) is correct.
Q. (10) The minimum value of sin2θ+cosec2θ is ?
(a) 2
(b) 0
(c) 3
(d) 1
Detail Solution:
We know that a2 + 1/a2 has minimum value as 2,
So, sin2θ+cosec2θ = sin2θ+1/sin2θ has min value as 2
Hence, Option (a) is correct.
Q. (11) If tanθ+cotθ=2 (00≤θ≤900) then the value of tan10θ+cot11θ is ?
(a) 2
(b) 0
(c) -1
(d) 1
Detail Solution:
So, tan10θ+cot11θ = 1 + 1 = 2
Hence, Option (a) is correct.
Q. (12) If tanθ+cotθ=2 (00≤θ≤900) then the value of tanθ+cotθ is ?
(a) 2
(b) 0
(c) -1
(d) 1
Detail Solution:
tanθ+cotθ=1 + 1 =2
Hence, Option (a) is correct.
Q. (13) If tanθ+cotθ=2 (00≤θ≤900) then the value of sinθ+cosθ is ?
(a) 2
(b) 0
(c) √2
(d) None of these
Detail Solution:
So, sinθ+cosθ = 1/√2 + 1/√2 =2/√2 = √2
Hence, Option (c) is correct.
Q. (14) If 00<θ<900 and 2sin2θ+3cosθ=3 then the value of θ is ?
(a) 00
(b) 300
(c) 600
(d) A or C
Detail Solution:
As, 2sin2θ+3cosθ=3
⇨2(1−cos2θ)+3cosθ=3
⇨2cos2θ−3cosθ+1=0
⇨(2cosθ−1)(cosθ−1)=0.
⇨cosθ = ½ Or cosθ =1
Thus, θ = 600 Or θ = 00
Hence, Option (d) is correct.
Q. (15) If sinθ=a/√(a2+b2) then the value of tanθ will be
(a) a/b
(b) b/a
(c) a+1/b+1
(d) ab/a+b
Detail Solution:
We have, cos2θ=1−sin2θ=1 – a2/(a2+b2)
cos2θ=( a2 + b2 a2)/(a2+b2)=b2/(a2+b2)
cosθ=b/√(a2+b2)
tanθ=sinθ/cosθ= *a/√(a2+b2)]/[ b/√(a2+b2)]=a/b.
Hence, Option (a) is correct.
Q. (16) If sin210=x/y then sec210−sin690 is ?
(a) x2/*y√(y2−x2)]
(b) x/*y√(y2−x2)]
(c) xy/*√(y2−x2)]
(d) y/*x√(y2−x2)]
Detail Solution:
sin210=cos690,
⇨⇨sin210=cos(900 – 210) = cos690
⇨sin210=cos690=x/y,
⇨1−cos2690=sin2690=1−x2/y2=(y2−x2)/y2
sin690=√(y2−x2)/y.
We have
sec210−sin690=cosec690−sin690
=1−sin2690/sin690
=cos2690/sin690
=x2/y2×y/√(y2−x2)
=x2/*y√(y2−x2)]
Hence, Option (a) is correct.
Q. (17) If sin θ + cos θ = 2 , then find the value of cosec θ – sec θ?
(a) 1/3
(b) 2/3
(c) 4/3
(d) 3
Detail Solution:
If sin θ + cos θ = p
cosec θ – sec θ = q
Then, p - 1/q = 2/q
⇨2-(1/2) = 3/2 = 2/q
q= 4/3
or cosec θ – sec θ = 4/3
Q. (18) The minimum value of 2sin2θ+3cos2θ is ?
(a) 0
(b) 1
(c) 2
(d) 3
Detail Solution:
2sin2θ+3cos2θ
=2sin2θ+2cos2θ + cos2θ
=2(sin2θ+cos2θ) + cos2θ
=2x1 + cos2θ
=2 + cos2θ
This expression will be minimum for Minimum value of cos2θ that is 0
=2
Q. (19) If tanθ=3/4 and θ is acute then, sinθ is equal to,
(a) 1/3
(b) 3/5
(c) 5/7
(d) 1
Detail Solution:
We have:
tanθ=3/4
cotθ=4/3
cot2θ=cosec2θ−1=16/9
cosec2θ=25/9
cosecθ=5/3.
sinθ = 3/5
Q. (20) If y = 36cos2x + 16cosec2x - 4 then Ymin ?
(a) 0
(b) 11
(c) 22
(d) 44
Detail Solution:
Trick:
If below equations are given
y = a2sin2x + b2 cosec2x + c
y = a2 cos2x + b2sec2x + c
y = a2tan2x + b2cot2x + c
Then, ymin = 2ab + c
ymax = infinite.
For the given sum,
ymin = 2x √36 x √16 - 4
= 2x6x4 + 4 = 48 - 4 = 44
Q. (21) If (1+sinA)(1+sinB)(1+sinC)=(1−sinA)(1−sinB)(1−sinC), then the expression on each side of the equation equals,
(a) 1
(b) sinA.sinB.sinC
(c) cosA.cosB.cosC
(d) tanA.tanB.tanC
Detail Solution:
We have given
(1+sinA)(1+sinB)(1+sinC)=(1−sinA)(1−sinB)(1−sinC)=k
So,(1+sinA)(1+sinB)(1+sinC)=k---------------------- -- (i) &,
(1−sinA)(1−sinB)(1−sinC)=k.------------------------------ (ii)
Multiplying equation (i) and (ii) we get,
k2=(1−sin2A)(1−sin2B)(1−sin2C)
k2 =cos2A.cos2B.cos2C
k = cosA.cosB.cosC
Q. (22) If tanθ=1, then the value of (8sinθ+5cosθ)/(sin3θ−2cos3θ+7cosθ) is,
(a) 1
(b) 2
(c) 4
(d) 3
Detail Solution:
tanθ=1,
then sinθ=cosθ.
So, (8sinθ+5cosθ)/(sin3θ−2cos3θ+7cosθ)
=13/(7−sin2θ)
[putting sinθ=cosθ]
Or, cot2θ=1,
Or, cosec2θ−1=1,
Or, sin2θ=1/2.
Substituting, in 13/(7−sin2θ)
We get,
=13/(7−1/2)
=13/(13/2)
=2
Hence, Option (b) is correct.
Q. (23) Find maximum value of 4tanx + 3cot x + 10 is:
(a) 10
(b) 15
(c) 17
(d) 31
Detail Solution:
Q. (24) (secθ−cosθ)2+(cosecθ−sinθ)2−(cotθ−tanθ)2 is,
(a) 0
(b) 1
(c) -1
(d) 2
Detail Solution:
(secθ−cosθ)2=sec2θ(1−cos2θ)2= (sin2θ)2/ cos2θ =sin2θ. sin2θ / cos2θ =sin2θtan2θ.
Similarly,
(cosecθ−sinθ)2=cos2θcot2θ.
Adding all we get:
2−tan2θ(1−sin2θ)−cot2θ(1−cos2θ)
=2−(sin2θ+cos2θ)
= 2-1=1
Hence, Option (b) is correct.
Q. (25) If If tan2θ.tan4θ=1, then the value of tan3θ is,
(a) 0
(b) 1
(c) √3
(d) 2
Detail Solution:
tan2θ.tan4θ=1,
tan2θ=1/tan4θ=cot4θ.
tan2θ= tan(900−4θ), where θ is acute.
2θ= 900−4θ
6θ=900
3θ=450
tan3θ=tan450
=1
Hence, Option (b) is correct.
Q. (26) If sinθ+cosecθ=2 (00≤θ≤900) then the value of sin100θ - cosec111θ is,
(a) 0
(b) 1
(c) -1
(d) 2
Detail Solution:
Trick:
We have
sinθ+cosecθ=2
Put θ=900
Then equation will be satisfy
⇒ 1 + 1 = 2
Hence, sin100θ - cosec111θ = 1 - 1 = 0
By putting value of θ=900
Hence, Option (b) is correct.
Q. (27) If (rcosθ−√3)2+(rsinθ−1)2=0, then the value of (rtanθ+secθ)/(rsecθ+tanθ) is,
(a) 4/5
(b) √34
(c) √54
(d) 54
Detail Solution:
(rcosθ−√3)=0 ⇒ rcosθ=√3.......(i)
(rsinθ−1)=0
(rcosθ)2 + (rsinθ)2 = √32 + 12 =3+1=4
r2(cos2θ + sin2θ)=4 and r2(1)=4
r=2
By putting these values in (i) (rtanθ+secθ)/(rsecθ+tanθ) we get 4/5
Hence, Option (a) is correct.
Q. (28) If tanθ=3/4 and 0<θ<π/2 and 25xsin2θcosθ=tan2θ, then the value of x is
(a) 1/4
(b) 3/16
(c) 5/64
(d) 7/256
Detail Solution:
25xsin2θcosθ=tan2θ
25xsin2θcosθ=sin2θ/cos2θ
25x=sec3θ
As given, tanθ=3/4
sec2θ=1+tan2θ=1 + 9/16= 25/16
secθ = 5/4
By substituting the value of secθ= 5/4, We get
25x=sec3θ ⇒ x = 5/64
Hence, Option (c) is correct.
Q. (29) If tanθ+cotθ=2 (00≤θ≤900) then the value of tan100θ - cot111θ is ?
(a) 0
(b) 1
(c) -1
(d) -2
Detail Solution:
tanθ+cotθ=2
Put θ= 45, then equation will be satisfy
⇒1+1=2
Now, by putting value of θ=45 , we get
So, tan100θ - cot111θ =1 - 1 = 0
Hence, Option (a) is correct.
Q. (30) If 4 sin θ + 3 cos θ = 2 , then find the value of 4 cos θ – 3 sin θ:
(a) √21
(b) 3
(c) √3
(d) 1
Detail Solution:
Trick:
If a sin θ + b cos θ = m
& a cos θ – b sin θ = n Then a2 + b2 = m2 + n2
Let 4 cos θ – 3 sin θ = x
By using above Trick
We get
⇒42 + 32 = 22 + x2
⇒16 + 9 = 4 + x2
⇒X = √21
Hence, Option (a) is correct.